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Neutrino flavor oscillations are analyzed in the framework of Quantum Geometry model
proposed by Caianiello. In particular, we analyze the consequences of the model for
accelerated neutrino particles that experience an effective Schwarzschild geometry mod-
ified by the existence of an upper limit on the acceleration, which implies a violation of
the equivalence principle. We find a shift of quantum-mechanical phase of neutrino os-
cillations, which depends on the energy of neutrinos asE3. Implications on atmospheric
and solar neutrinos are discussed.

1. INTRODUCTION

The long-standing problem about the deficiency of the solar neutrino and the
atmospheric neutrino might be explained invoking oscillations between the var-
ious flavors or generations of neutrinos. In fact, neutrino oscillations can occur
in vacuum if the eigenvalues of the mass matrix are not all degenerate, and the
corresponding mass eigenstates are different from weak interaction eigenstates
(Bilenky and Pontecorvo, 1978). The most discussed version of this type of solu-
tions is the MSW effect (Mikhyev and Smirnov, 1986a,b; Wolfenstein, 1978), in
which solar electron neutrinos are converted almost completely into muon or tau
neutrinos, owing to the presence of matter in the Sun.

Recently, quantum-mechanical oscillations of neutrinos propagating in a
gravitational field (usually the Schwarzschild field) has been discussed by sev-
eral authors (e.g., Ahluwalia and Burgad, 1996; Bhattacharyaet al., 1999, and
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references therein) in view of astrophysical consequences also. Ahluwalia and
Burgard consider, in fact, the gravitational effect on oscillations, showing that an
external weak gravitational field of a star adds a new contribution to the phase dif-
ference (Ahluwalia and Burgard, 1996). They also suggest that the new oscillation
phase may be a significant effect on the supernova explosions because the extremely
large fluxes of neutrinos are produced with different energies corresponding to the
flavor states. This result has been also discussed by Bhattacharyaet al. (1999).
In their approach it is shown that the possible gravitational effect appears at the
higher order with respect to one calculated in Ahluwalia and Burgard (1996),
with a magnitude of the order 10−9, which is negligible in typical astrophysical
applications.

An alternative mechanism of neutrino oscillations has been proposed in
Gasperini (1988, 1989) and Halprin and Leung (1991) as a means to test the equiv-
alence principle. In this mechanism, neutrino oscillations follow by assuming a
flavor nondiagonal coupling of neutrinos to gravity, which violates the equiva-
lence principle, that is, if the universality of the gravitational couplings to different
flavors breaks down, additional phase difference appears. Therefore, understand-
ing how presence of a gravitational field or violation of the equivalence principle
affects neutrino oscillation phase is an important matter.

In this paper we face this issue in the framework of Quantum Geometry model
proposed by Caiainiello some years ago in an attempt to unify Quantum Mechanics
and General Relativity principles (see Caianiello, 1981, 1992, and references
therein). In this model the effective four-dimensional metric depends on the mass
of a given test particle, so thattest particles with different rest masses experience
different geometries and, as consequence, an effective violation of the equiva-
lence principle occurs. The geodesic paths along which test particles are moving
become mass-dependent, resulting in a nonuniversality of the gravitational cou-
pling (Caianielloet al., 1990a), and making the metric observer-dependent, as also
conjectured by Gibbons and Hawking (1977).

The view frequently held that proper acceleration of a particle is limited
upwardly (Caianielloet al., 1982) finds in this model a geometrical interpretation
epitomized by the line element

ds̃2 =
(

1+ gµνdẍµdẍν

A2
m

)
ds2 ≡ σ 2(x) ds2, (1)

experienced by the accelerating particle along its worldline. In (1)Am = 2mc3/h
is the proper Maximal Acceleration (MA) of the particle of massm and four-
acceleration̈xµ.

MA has several implications. It provides a regularization method in Quantum
Field Theory (Feoliet al., 1999b), allowing to circumvent inconsistencies associ-
ated with the application of pointlike concept to relativistic quantum particles, it
is the same cutoff on the acceleration required in an ad hoc fashion by Sanchez
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(1993) to regularize the entropy and free energy of quantum strings, and it is also
invoked as a necessary cutoff by McGuigan in the calculation of black hole entropy
(McGuigan, 1994).

Applications of Caianiello’s model include cosmology (Caianielloet al.,
1991; Capozzielloet al., 1999), where initial singularity can be avoided while
preserving inflation, dynamics of accelerated strings (Feoli, 1993), and energy
spectrum of a uniformly accelerated particle (Caianielloet al., 1990b).

The extremely large value thatAm takes for all known particles makes a direct
test of the model difficult. Nonetheless, a direct test that use photons in a cavity has
also been suggested (Papiniet al., 1995). More recently, we have worked out the
consequences of the model for classical electrodynamics of a particle (Feoliet al.,
1997), mass of the Higgs boson (Kuwata, 1996; Lambiaseet al., 1999), and Lamb
shift in hydrogenic atoms (Lambiaseet al., 1998). In the last instance, agreement
between experimental data and MA corrections is very good forH and D. For
He+ agreement between theory and experiment is improved by 50% when MA
corrections are included. MA effects in muonic atoms appear to be measurable in
planned experiments (Chenet al., 1999). MA also affects the helicity and chirality
of particles (Chenet al., 2000). Very recently the behavior of classical (Feoliet al.,
1999a) and quantum (Capozzielloet al., 2000a) particles in a Schwarzschild field
with MA modifications has been studied.

A limit on acceleration also occurs in string theory. Here the upper limit
manifests itself through Jeans-like instabilities (Gasperiniet al., 1991; Sanchez
and Veneziano, 1990) that occur when acceleration induced by the background
gravitational field is larger than a critical valueac = (mα)−1 for which string ex-
tremities become causally disconnected (Gasperini, 1992). String mass ism and
string tensionα. Frolov and Sanchez (Frolov and Sanchez, 1991) have then found
that a universal critical accelerationac must be a general property of strings. It
is worth to note that it is possible to derive, in the framework of Caianiello’s
Quantum Geometry model, the generalized uncertainty principle of string theory
(Capozzielloet al., 2000b).

The paper is organized as follows. In Section 2 we shortly discuss the Quantum
Geometry model and derive the modified Schwarzschild geometry by taking into
account the MA corrections (for details see Feoliet al., 1999a). In Section 3
we calculate the corrections induced by MA to the quantum-mechanical phase
of mixed states of neutrinos radially propagating in the modified Schwarzschild
geometry. Conclusions are drawn in Section 4.

2. MODIFIED SCHWARZSCHILD SPACE–TIME
IN QUANTUM GEOMETRY

The model proposed by Caianiello, which includes the effects of MA in dy-
namics of particles, was to enlarge the space–time manifold to an eight-dimensional
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space–time tangent bundleT M8. In this way the invariant line element is defined
as (Caianielloet al., 1990a)

ds̃2 = gAB dXA dXB, A, B = 1, . . . ,8, (2)

where the coordinates ofTM8 are

XA =
(

xµ;
1

Am

dxµ

ds

)
, µ = 1, . . . ,4, (3)

and

gAB = (gµν ; gµν), ds2 = gµν dxµ dxν . (4)

ds is the ordinary line element of four-dimensional space–time anddxµ/ds is the
four-velocity of the particle moving along its worldline. In Eq. (3),Am is the MA
depending, in the quantum geometry theory proposed by Caianiello, on massm
of the particle, whose value is given byAm = 2mc3/h. In other models,Am is
interpreted as a universal constant andm is replaced by Plank massmP. Using
Eqs. (3) and (4) the line element (2) can be written as

ds̃2 =
(

1+ gµν ẍµ ẍν

A2
m

)
gαβ dxα dxβ ≡ σ 2(x)gαβ dxα dxβ, (5)

whereẍµ = d2xµ/ds2 is the four-acceleration of particles andds2 = gµν dxµ dxν

is the metric due to a background gravitational field. In absence of gravity,gµν
is replaced by Minkowski metric tensorηµν . The embedding procedure has been
developed to find the effective space–time geometry in which a particle can move
when the constraint of an MA is present (Caianielloet al., 1990b). In fact, if
one finds the parametric equations that relate velocity fieldẋµ to the first four
coordinatesxµ, one can calculate the effective four-dimensional metric on the
hypersurface locally embedded inTM8. This procedure strongly depends on the
choice of velocity field of the particle. From Eq. (5) it follows also that even starting
from a phase spaceTM8 with a flat metric, that is,gAB = (ηµν ; ηµν), in case of
accelerating particles characterized by a velocity fieldẋµ not trivially constant,
one gets an effective four-dimensional geometry that, in general, is curved. In
other words, even though background space–time is flat, the effective geometry
experienced by an accelerating particle is curved.

We stress that the curvature of effective geometry is not induced by matter
through conventional Einstein equations: It is because of the motion in momentum
space and vanishes in the limith→ 0. Thus, it represents a quantum correction
to given background geometry.

To calculate the corrections to the Schwarzschild field experienced by a parti-
cle initially at infinity and falling toward the origin along a geodesic, one must cal-
culate the metric induced by the embedding procedure (5). On choosingθ = π/2,



P1: VENDOR

International Journal of Theoretical Physics [ijtp] PP072-296074 February 16, 2001 11:11 Style file version Nov. 19th, 1999

Neutrino Oscillations in Caianiello’s Quantum Geometry Model 853

one finds the conformal factor produced by the embedding procedure

σ 2(r ) = 1+ 1

A2
m

[(
1− 2M

r

)
ẗ2− r̈ 2

1− 2M/r
− r 2φ̈

2

]
, (6)

whereẗ, r̈ , andφ̈ are given by the standard results (Misneret al., 1973)

ẗ2 = Ẽ2

(1− 2M/r )4

4M2

r 4

[
Ẽ2−

(
1− 2M

r

)(
1+ L̃2

r 2

)]
,

r̈ 2 =
(
− M

r 2
+ L̃2

r 3
− 3M L̃2

r 4

)2

, (7)

φ̈
2 = 4L̃2

r 6

[
Ẽ2−

(
1− 2M

r

)(
1+ L̃2

r 2

)]
.

M is mass of the source,Ẽ andL̃ are total energy (E) and angular momentum (L)
per unit of particle massm, respectively. The conformal factorσ 2(r ) is then given
by (Feoliet al., 1999a)

σ 2(r ) = 1+ 1

A2
m

{
− 1

1− 2M/r

(
− 3M L̃2

r 4
+ L̃2

r 3
− M

r 2

)2

+
(
−4L̃2

r 4
+ 4Ẽ2M2

r 4(1− 2M/r )3

)[
Ẽ2−

(
1− 2M

r

)(
1+ L̃2

r 2

)]}
. (8)

Modifications to Schwarzschild geometry experienced by radially (L̃ = 0 acceler-
ating neutrinos are easily calculated. In fact, from Eq. (8) and by using weak field
approximation, one gets

σ 2(r ) = 1− 1

A2
m

(
1

4
+ E2

m2
− E4

m4

)
r 2

s

r 4
, (9)

wherers = 2GM/c2 is Schwarzschild radius.

3. MA CORRECTIONS TO QUANTUM-MECHANICAL PHASE

Corrections induced by MA to the quantum-mechanical phase mixing of
massive neutrinos are calculated following Bhattacharyaet al.(1999). In the semi-
classical approximation, where the action of a particle is considered as a quantum
phase, a particle propagating in a gravitational field from a point A to a point B
changes its quantum mechanical phase according to the relation (Stodolski, 1979)

8 = 1

h

∫ B

A
m ds̃= 1

h

∫ B

A
pµ dxµ. (10)
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Herepµ = mg̃µν(dxν/ds̃) is four-momentum of the particle andg̃µν = σ 2(r )gµν ,
where the conformal factorσ 2(x) is defined in Eq. (9). In order that different
neutrinos could interfere at the same final point B, with coordinates (tB, r B), one
requires, in the geometrical optical approximation, that relevant components of
the wave function have not started from the same initial point A, with coordinates
(tA, r A). Then, the quantum-mechanical phase becomes

8 = 1

h

∫ r B

r A

pr dr. (11)

Inserting momentum of the particle, calculated by mass-shell condition
g̃µν pµpν = m2,

pr =
√

E2−m2σ 2(1− rs/r )

1− rs/r
(12)

into Eq. (11) one gets, up to second order inrs/r ,

8 = 80+8Am (13)

where

80 =
√

E2−m2

h
(r B − r A)+ (2E2−m2)rs

2
√

E2−m2
log

rs

r
(14)

−r 2
s

√
E2−m2

h

(
1+ m2

2(E2−m2)
+ m4

8(E2−m2)2

)(
1

r B
− 1

r A

)
,

represents the result of Bhattacharyaet al. (1999), and

8Am =
1

A2
m

(
1

4
+ E2

m2
− E4

m4

)
m2r 2

s

6h
√

E2−m2

(
1

r 3
B

− 1

r 3
A

)
(15)

is the contribution due to the MA. For ultrarelativistic neutrinos,E À m, the
relative quantum-mechanical phase18 of the two different mass eigenstates is
given by

18 = 18(0)+18Am, (16)

where

18(0) = 1m2

2Eh
(r B − r A)+ 1m2

4E2
(r B − r A)− 1m2

(
m2

1+m2
2

)
rs

8 hE3
log

r B

r A
, (17)

as in Bhattacharyaet al. (1999), and

18Am =
hE3

24

1m2
(
m2

1+m2
2

)
m4

1m4
2

r 2
s

(
r 3

B − r 3
A

)
r 3

Br 3
A

. (18)
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Here1m2 = |m2
2−m2

1|. In Eq. (17), the first term represents the standard phase
of neutrino oscillations, the second term is the kinetic correction to the first order,
and finally, the last term is the gravitational correction to the leading order. The
second and third term in Eq. (17) can be neglected with respect to the first term,
so that we will neglect them in what follows. Notice that18Am → 0 ash→ 0.
It is more convenient to rewrite phases (17) and (18) in the following way

18(0) = 2.5× 1031m2

eV2

MeV

E

r A − r B

km
, (19)

and

18Am = 2.4× 1081m2

eV2

E3

MeV3

M2

M2¯

eV6

(m1m2)4/
(
m2

1+m2
2

)
× km3

(r Ar B)3/
(
r 3

A − r 3
B

) , (20)

whereM¯ is the solar mass.
Comparison between quantum-mechanical phases (19) and (20) for atmo-

spheric neutrinos with mass-squared difference1m2 = (10−2÷ 10−3) eV2 are
reported in Table I. We have assumed the following numerical values:r A =
REarth= 6.3× 103 km andr B = r A + 10 km, rs ∼ 10−6 km is the Schwarzschild
radius for Earth and, finally, the energy of neutrinos isE ∼ 1 GeV. MA correc-
tions to the quantum-mechanical phase are meaningful for neutrinos with masses
m1,m2 ∼ 0.05÷ 0.1 eV. In this range, in fact, such corrections turn out to be
10−2÷ 10−3 smaller than the phase (17).

For solar neutrinos, we have a similar situation. Results are summarized
in Table II for the values1m2 = (10−10÷ 10−12) eV2, r A = REarth, r B = r A+
1,5× 108 km, E ∼ 1 MeV and E ∼ 10 MeV, M ∼ M¯. Again, the quantum

Table I. Quantum-Mechanical Phase Mixing for Atmospheric Neutrinos with Fixed
Value of1m2 andE ∼ 1GeV

m1 m2 1m2 18(0) 18Am

0.5 0.51 10−2 2.5 · 10−1 10−8

0.1 0.14 10−2 2.5 · 10−1 8.6 · 10−5

0.05 0.11 10−2 2.5 · 10−1 1.8 · 10−3

0.01 0.1 10−2 2.5 · 10−1 1.14

0.5 0.501 10−3 2.5 · 10−2 10−9

0.1 0.104 10−3 2.5 · 10−2 2 · 10−5

0.05 0.06 10−3 2.5 · 10−2 8.9 · 10−4

0.01 0.03 10−3 2.5 · 10−2 1.13

Note. m1 andm2 are expressed in eV.
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Table II. Quantum-Mechanical Phase Mixing for Solar Neutrinos

m E 18(0)/1m2 18Am/1m2

0.5 1 2.5 · 1011 102

0.1 1 2.5 · 1011 2 · 106

0.05 1 2.5 · 1011 1.2 · 108

0.01 1 2.5 · 1011 2 · 1012

0.5 10 2.5 · 1010 105

0.1 10 2.5 · 1010 2 · 109

0.05 10 2.5 · 1010 1.2 · 1011

0.01 10 2.5 · 1010 2 · 1015

Note.Herem1 ∼ m2 ∼ m are expressed in eV andE in MeV.

mechanical phase corrections induced by MA become relevant for neutrino masses
of the order 0.05÷ 0.1 eV.

Masses below 0.05 eV lead to high corrections that cannot be treated in this
perturbative model.

It is worthwhile to point out the different dependence on the energy of the two
phases:18(0) ∼ E−1 and18Am ∼ E3. This can notably help the separation of
the two components in experimental tests, because the weight of MA corrections
is largely affected by the energy of neutrinos. A good statistical analysis could
succeed in bringing this term to light.

4. CONCLUSIONS

Einstein’s equivalence principle plays a fundamental role in the construc-
tion and testing of theories of gravity. Though verified experimentally to better
than a part in 1011 for bodies of macroscopic dimensions, doubts have at times
been expressed as to its validity down to microscopic scales. It is conceivable, for
instance, that the equality of inertial and gravitational-mass break down for anti-
matter, or in quantum field theory at finite temperatures (Donoghueet al., 1984,
1985). Einstein’s equivalence principle is also violated in the Quantum Geometry
model developed by Caianiello as a first step toward the unification of Quantum
Mechanics and General Relativity. The model interprets quantization as curva-
ture of the eight-dimensional space–time tangent bundleTM8. In this space the
standard operators of the Heisenberg algebra are represented as covariant deriva-
tives and the quantum commutation relations are interpreted as components of the
curvature tensor.

In this paper we have analyzed the oscillation phenomena of neutrinos prop-
agating in a Schwarzschild geometry modified by the existence of MA, which
implies a violation of the equivalence principle. We have calculated the quantum-
mechanical phase showing that, for the consistence of the Caianiello model,
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our results are compatible with estimations of the neutrino masses givingmν ∼
0.05÷ 1 eV.

Eqs. (19) and (20) allow to calculate the flavor oscillation probability, which
is given by

Pνe→νµ = sin2 2θ sin2

(
π
1r

λAm

)
, (21)

whereθ is the mixing angle, andλAm is the oscillation length defined as (for
simplicity we use the natural unitsh = c = 1)

λ−1
Am
= 1m2

4Eπ
+ E3

24π

1m2
(
m2

1+m2
2

)
m4

1m4
2

r 2
s

(
r 2

A + r Ar B + r 2
B

)
r 3

Ar 3
B

. (22)

As well known, in the cases of interest, the oscillation lengthλ does depend on
the energy of neutrinos asλ−1 ∼ En (Fogli et al., 1999). Thenλ−1

Am
corresponds

to standard oscillation plus the equivalence principle violation induced by the
existence of MA, (n = −1)⊕ (n = 3). The behaviourλ−1 ∼ E−1 coming from a
flavor depending on the coupling to the gravitational field, as proposed by Gasperini
(1988, 1989) and Halprin and Leung (1991), appeared to fit the SuperKamiokande
data, as well as the other alternative mechanisms (Bargeret al., 1999; Choubey and
Goswami, 2000; Footet al., 1998). Nevertheless, a different analysis of such data,
including, for example, upward-going muons events, has been performed in Fogli
et al.(1999) and Lipari and Lusignolo (1999). In these papers, it is shown that the
best fit does confirm, at least for atmospheric neutrinos, the standard scenario as
the dominant oscillation mechanism, whereas the equivalence principle violation,
as formulated in Gasperini (1988, 1989) and Halprin and Leung (1991), do not
provide a viable description of data.

Unlike the mechanism proposed in Gasperini (1988, 1989) and Halprin and
Leung (1991), in this paper we have suggested an alternative mechanism for in-
troducing, in the framework of Quantum Geometry, a violation of the equivalence
principle in the neutrino oscillation physics. The main consequence of this ap-
proach, as shown in Eq. (22), is a different behaviour of the inverse of the oscilla-
tion length as a function of the energy (∼E3) with respect to the one obtained in
Gasperini (1988, 1989) and Halprin and Leung (1991), whose energy dependence
has the functional form (E1 f φ)−1, whereφ is the constant gravitational field and
1 f the measure of the violation of the equivalence principle.

Even though many efforts have been made till now for solving the neutrino
oscillation problem, a definitive solution is far from achieved. Much more studies
are necessary for understanding the origin of neutrino masses, the mixing of states,
and the analysis of collaborations involving in neutrino oscillations experiments.
Only the future generation of experiments could provide new data for probing
the E3-dependence induced by MA corrections, allowing to establish whether the
violation of the equivalence principle discussed in this paper occurs, and as a
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consequence, whether the Quantum Geometry model proposed by Caianiello is
a concrete step towards an unified theory of Quantum Mechanics and General
Relativity.

ACKNOWLEDGMENT

Research supported by MURTS fund PRIN 99.

REFERENCES

Ahluwalia, D. V. and Burgad, C. (1996).General Relativity and Gravitation28, 1161; grqc/9606031.
Barger, V., Learned, J. G., Pakvasa, S., and Weiler, T. J. (1999).Physical Review Letters82, 2640.
Bhattacharya, T., Habib, S., and Mottola, E. (1999).Physical Review D59, 067301.
Bilenky, S. M. and Pontecorvo, B. (1978).Physics Report41, 225.
Caianiello, E. R. (1981).Lettere Nuovo Cimento32, 65.
Caianiello, E. R. (1992).Rivista del Nuovo Cimento15, (4).
Caianiello, E. R., De Filippo, S., Marmo, G., and Vilasi, G. (1982).Lett. Nuovo Cimento34, 112.
Caianiello, E. R., Feoli, A., Gasperini, M., and Scarpetta, G. (1990b).International Journal of Theo-

retical Physics29, 131.
Caianiello, E. R., Gasperini, M., and Scarpetta, G. (1990a).Il Nuovo Cimento105B, 259.
Caianiello, E. R., Gasperini, M., and Scarpetta, G. (1991).Classical Quantum Gravity8, 659.
Capozziello, S., Feoli, A., Lambiase, G., Papini, G., and Scarpetta, G. (2000a)Phys. Lett. A268, 247.
Capozziello, S., Lambiase, G., and Scarpetta, G. (1999).Nuovo Cimento114B, 93.
Capozziello, S., Lambiase, G., and Scarpetta, G. (2000b).International Journal of Theoretical Physics

39, 15.
Chen, C. X., Papini, G., Mobed, N., Lambiase, G., and Scarpetta, G. (1999).Il Nuovo Cimento

B 114, 199.
Chen, C. X., Papini, G., Mobed, N., Lambiase, G., and Scarpetta, G. (2000).Il Nuovo Cimento

B 114, 1335.
Choubey, S. and Goswami, S. (2000).Astroparticle Physics14, 67.
Donoghue, J. F., Holstein, B. R., and Robinett, R. W. (1984).Physical Review D30, 2561.
Donoghue, J. F., Holstein, B. R., and Robinett, R. W. (1985).General Relativity and Gravitation17, 207.
Feoli, A. (1993).Nuclear Physics B396, 261.
Feoli, A., Lambiase, G., Nesterenko, V. V., and Scarpetta, G. (1999b).Physical Review D60, 065001.
Feoli, A., Lambiase, G., Papini, G., and Scarpetta, G. (1997).Il Nuovo Cimento112B, 913.
Feoli, A., Lambiase, G., Papini, G., and Scarpetta, G. (1999a).Physics Letters A263, 147.
Fogli, G. L., Lisi, E., Marrone, A., and Scioscia, G. (1999).Physical Review D60, 053006.
Foot, R., Leung, C. N., and Yasuda, O. (1998).Physics Letters B443, 185.
Frolov, V. P. and Sanchez, N. (1991).Nuclear Physics B349, 815.
Gasperini, M. (1988).Physical Review D38, 2635.
Gasperini, M. (1989).Physical Review D39, 3606.
Gasperini, M. (1992).General Relativity and Gravitation24, 219.
Gasperini, M., Sanchez, N., and Veneziano, G. (1991).Nuclear Physics B364, 365.
Gibbons, G. W. and Hawking, S. W. (1977).Physical Review D15, 2738.
Halprin, A. and Leung, C. N. (1991).Physical Review Letters67, 1833.
Kuwata, S. (1996).Il Nuovo Cimento B111, 893.
Lambiase, G., Papini, G., and Scarpetta, G. (1998).Physics Letters A244, 349.
Lambiase, G., Papini, G., and Scarpetta, G. (1999).Il Nuovo Cimento114B, 189.



P1: VENDOR

International Journal of Theoretical Physics [ijtp] PP072-296074 February 16, 2001 11:11 Style file version Nov. 19th, 1999

Neutrino Oscillations in Caianiello’s Quantum Geometry Model 859

Lipari, P. and Lusignoli, M. (1999).Physical Review D60, 013003.
McGuigan, M. (1994).Physical Review D50, 5225.
Mikhyev, S. P. and Smirnov, A. Yu (1986a).Sov. J. Nuclear Physics42, 913.
Mikhyev, S. P. and Smirnov, A. Yu (1986b).Nuovo Cimento C9, 17.
Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973).Gravitation, W. H. Freeman, San Francisco.
Papini, G., Feoli, A., and Scarpetta, G. (1995).Physics Letters A202, 50.
Sanchez, N. (1993).Structure: From Physics to General Systems, M. Marinaro and G. Scarpetta, eds.,

World Scientific, Singapore, Vol. 1, p. 118.
Sanchez, N. and Veneziano, G. (1990).Nuclear Physics B333, 253.
Stodolski, L. (1979).General Relativity and Gravitation11, 391.
Wolfenstein, L. (1978).Physical Review D17, 2369.


